Chem. Ber. 106, 3929---3937 (1973)

Über Chalkogenolate, LXVI¹⁾

Untersuchungen an *cis*-1,2-Dicyanäthylen-1,2-dithiolaten 4. Kristallstruktur von Bis(methylthio)maleonitril²⁾

Martin Dräger*, Gertrud Kiel und Gerhard Gattow

Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, D-6500 Mainz, Johann Joachim Becher-Weg 24

Eingegangen am 28. August 1973

Die Struktur des Bis(methylthio)maleonitrils (1) wurde röntgenographisch aus Diffraktometer-Einkristalldaten bestimmt und bis zu einem konventionellen R von 0.049 verfeinert. Der (NCCS)₂-Teil unterscheidet sich in seinen Dimensionen nicht vom (NCCS)₂²⁻-Liganden in Übergangsmetallkomplexen. Die größere Stabilität von 1 gegenüber dem Fumarsäure-Isomeren wird diskutiert. Die Struktur besteht aus planaren 1-Schichten parallel zur Fläche (101) mit optimaler Packungsdichte der 16-fach koordinierten Molekülc.

On Chalcogenolates, LXVI¹⁾

Studies on *cis*-1,2-Dicyanoethylene-1,2-dithiolates. 4. Crystal Structure of Bis(methylthio)maleonitrile²⁾

The crystal structure of bis(methylthio)maleonitrile (1) has been determined from single crystal X-ray data and refined to a conventional R of 0.049. The dimensions of the (NCCS)₂-part are not differentiated from those of the (NCCS)₂²⁻-ligand in transition metal complexes. The higher stability of 1 as compared to the fumaric acid isomer is discussed. The structure consists of planar 1 layers parallel to the (101)-plane and is densest packed with 16-coordinated molecules.

In Fortführung unserer strukturchemischen Untersuchungen an S,S-Dimethyl-Derivaten von Dithiolatliganden³⁾ bestimmten wir die Kristallstruktur des Bis-(methylthio)maleonitrils (1).

Die Darstellung der Substanz beschrieben erstmals *Bähr* und *Schleitzer*⁴). *Simmons*, *Blomstrom* und *Vest*⁵) untersuchten das Gleichgewicht mit dem isomeren Bis(methyl-

¹⁾ LXV. Mitteil.: R. Engler, G. Kiel und G. Gattow, Z. Anorg. Allg. Chem., im Druck.

²⁾ 3. Mitteil: M. Dräger und G. Gattow, Z. Anorg. Allg. Chem. 391, 203 (1972).

³⁾ M. Dräger und G. Gattow, Chem. Ber. 104, 1429 (1971).

⁴⁾ G. Bähr und G. Schleitzer, Chem. Ber. 90, 438 (1957).

⁵⁾ H. E. Simmons, D. C. Blomstrom und R. D. Vest, J. Amer. Chem. Soc. 84, 4756 (1962).

thio)fumaronitril und stellten fest, daß 1 die thermodynamisch stabilere Verbindung ist. Als Erklärung für die ungewöhnliche Stabilität dieses Maleinsäurederivats postulierten sie eine S–S-Wechselwirkung unter Ausbildung eines Quasi-Vierringsystems mit zwei Doppelbindungen. Ein analog postuliertes ungesättigtes Vierringsystem des geladenen Dithiolatliganden (NCCS)₂^{2-/} konnte jedoch bisher in allen untersuchten Fällen nicht bestätigt werden. In Verbindungen mit Übergangsmetallen⁶⁾ erklärt sich die Stabilität des Dimercaptomaleonitrils durch die Fähigkeit des *cis*-Schwefels zur Komplexbildung, und selbst in Alkalímetallsalzen liegt eher komplex gebundenes als frei ionisiertes Dimercaptomaleonitril vor ²).

IR- und ESCA-spektroskopische Daten von 1 und $[D_6]$ -1⁷⁾ und röntgenographische Daten⁸⁾ wurden von uns bereits früher angegeben.

Kristallvermessung

Darstellung, Kristallisation, Gitterkonstantenbestimmung und Raumgruppenbestimmung erfolgten wie beschrieben ^{7,8}. Die dort gefundenen Daten sind:

Bis(methylthio)maleonitril (1) C₆H₆N₂S₂ (170.26) hellgelbe Nadeln parallel [101] monoklin (Cu_{Kα}-Strahlung $\lambda = 1.5418$ Å) a = 14.268 (5) Å, b = 12.748 (4) Å, c = 9.304 (5) Å, $\beta = 102.83$ (5)°, V = 1650 Å³ Z = 8, $d_{ront} = 1.37$ g/ml, $d_{exp} = 1.33$ (2) g/ml Raumgruppe C2/c (Nr. 15)

Zur Bestimmung der Reflexintensitäten diente eine abgeplattete Kristallnadel mit den ungefähren Abmessungen 800 μ || [101], 80 μ || [010] und 50 μ || [001], die zum Schutz gegen Verwitterung in eine Glaskapillare eingeschmolzen war. Gemessen wurde mit einem automatisierten Vierkreisdiffraktometer (CAD4 Enraf-Nonius) im $\omega/2\theta$ -scan mit monochromatisierter Mo-Strahlung (Graphitmonochromator, $\lambda = 0.71069$ Å). Der Schwenkbereich war $\Delta \vartheta = (1 + 0.5 \text{ tg}\vartheta)^\circ$. Die Zählrohrapertur betrug vertikal 4 mm und horizontal (4 + 2 tg ϑ) mm. Die erstrebte Mindestintensität pro Reflex war 3000 Impulse, begrenzt durch eine maximale Meßzeit von 180 s. Drei gut im reziproken Gitter verteilte Standardreflexe wurden zur Kontrolle alternierend alle 30 min gemessen. Der Intensitätsverlauf der Standardreflexe ergab eine Meßinstabilität des Diffraktometers von 0.007 und einen linearen Intensitätsverlust von 1.8% während der Messung. Da gleichzeitig keine Verschiebung der Reflexprofile zu beobachten war, wurde dieser Verlust auf eine langsame Zersetzung des Kristalls zurückgeführt und eine entsprechende Angleichung der Reflexintensitäten vorgenommen.

Die gemessenen und ausgeglichenen Intensitäten wurden zur Ermittlung von Standardabweichungen und Gewichten einer Zählstatistik unterworfen (angenommene Meßinstabilität des Diffraktometers 0.01). Reflexe mit $I < 1 \sigma(I)$ erhielten für die folgenden Rechnungen die Kennzeichnung "unmeßbar schwach" und eine Intensität von 1/3 der kleinsten gemessenen Intensität⁹). Es folgten die Lorentz- und Polarisationsfaktor-Korrekturen, wobei für die Vorpolarisation des verwendeten Graphitmonochromators ein Faktor von 0.966 angenommen wurde. Auf eine Absorptionskorrektur konnte bei einem linearen Absorptionskoeffizien-

⁶⁾ Eine Zusammenfassung gibt R. Eisenberg, Progr. Inorg. Chem. 12, 295 (1970).

⁷⁾ M. Dräger und G. Gattow, Z. Anorg. Allg. Chem. 387, 281 (1972).

⁸⁾ M. Dräger und G. Gattow, Z. Anorg. Allg. Chem. 387, 300 (1972).

⁹⁾ W. C. Hamilton, Acta Crystallogr. 8, 185 (1955).

ten von $\mu = 5.5$ cm⁻¹ und einem maximalen μR -Wert von 0.4 verzichtet werden. Nach Mittelung einiger symmetrieäquivalenter Reflexe resultierte ein Satz von 1007 unabhängigen $|F|_{\tau}^{2}$ -Werten entsprechend allen Reflexen bis sin² $\vartheta/\lambda^{2} = 0.28$; 360 davon besaßen die Kennzeichnung "unmeßbar schwach".

Lösung und Verfeinerung der Struktur

Eine Wilson-Statistik absolutierte die gemessenen $|F|^2$ -Werte. Der N(z)-Test und eine *E*-Statistik zeigten eindeutig das Vorliegen der centrosymmetrischen Raumgruppe C2/c. 171 *E*-Werte waren größer als 1.5 und für 168 dieser Werte konnten statistisch Vorzeichen bestimmt werden. Eine Fourier-Synthese hiermit ließ deutlich alle C-, N- und S-Atome eines 1-Moleküls erkennen. Zwei Fourier-Synthesen mit zuerst einer Auswahl und dann allen gemessenen |F|-Werten verifizierten dieses Ergebnis und zeigten kein weiteres starkes Maximum an.

Verfeinert wurde nach dem Verfahren der kleinsten Fehlerquadrate¹⁰⁾ zuerst in zwei Cyclen mit isotropen Temperaturfaktoren und dann in zwei Cyclen mit anisotropen Temperaturfaktoren ¹¹⁾. Eine anschließende Differenz-Fourier-Synthese ließ drei der vorhandenen 6 H-Atome erkennen; die übrigen drei H-Atome ergaben sich aus zwei weiteren Differenz-Fourier-Synthesen. Dieses sukzessive Auffinden der H-Atome zeigt, daß sich der vorliegende Datensatz beim Bestimmen von H-Positionen an der Grenze seiner Möglichkeiten befindet und die gefundenen H-Lagen sicherlich recht ungenau sind. Zum Abschluß wurden nach Einfügung der H-Atome mit einem isotropen *B* von 5.0 Å² noch zwei Verfeinerungscyclen für die Nicht-H-Atome gerechnet^{12, 14)}. Der konventionelle *R*-Wert¹⁵⁾ für die meßbaren Reflexe betrug hiernach R = 0.049 (unter Einschluß auch der "unmeßbar schwachen" Reflexe 0.089) und der gewichtete *R*-Wert¹⁵⁾ hatte den Wert $R_w = 0.052$.

Die Tabellen 1 und 2 enthalten die gefundenen Atomparameter mit Standardabweichungen. Eine Tabelle der gemessenen und berechneten Strukturamplituden und ein Plot der jeweiligen Abweichungen kann von den Autoren angefordert werden. Alle Berechnungen erfolgten mit Hilfe eines von uns zusammengestellten FORTRAN-Programmsystems¹⁶⁾ auf dem CDC-3300-Rechner des Rechenzentrums der Universität Mainz.

- ¹¹⁾ Anisotrope Temperaturkorrektur in der Form $\exp[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+2hk\beta_{12}+2hl\beta_{13}+2kl\beta_{23})].$
- ¹²⁾ Zur Gewichtssetzung wurden die aus der Zählstatistik ermittelten Gewichte durch einen winkelabhängigen Term 7.3 · (sin²9/λ²)^{1.5} modifiziert und ferner die "unmeßbar schwachen" Reflexe zusätzlich mit dem Faktor 0.2 herabgewichtet. Hiermit ergab sich ein guter Mittelwert für w · ∆F² in allen Intensitäts- und Winkelbereichen und ein Wert von ca. 1 für w · ∆F²/(m-n) (w Gewicht, ∆F Differenz berechnetes—gemessenes |F|, m Reflexzahl, n Anzahl der unabhängigen Parameter)¹³⁾.
- ¹³⁾ D. W. J. Cruickshank in Computing Methods in Crystallography, Herausgeber: J. S. Rollett, S. 112, Pergamon Press, Oxford 1965.
- 14) Ein Versuch zur Verfeinerung auch der H-Atome führte zwar zu einem kleineren *R*-Wert, aber sonst zu keinem recht sinnvollen Ergebnis, so daß die Positionen aus den Differenz-Fourier-Synthesen beibehalten wurden.
- ¹⁵⁾ Konventioneller *R*-Wert $R = \Sigma(|F_0| |F_c|)/\Sigma|F_{o_1}$; gewichteter *R*-Wert $R_w = [\Sigma w(|F_0| |F_c|)^2/\Sigma wF_o^2]^{1/2}$.
- ¹⁶⁾ M. Dräger und G. Gattow, Acta Chem. Scand. 25, 761 (1971). Zur Phasenbestimmung mittels direkter Methoden wurde diesem System eine von uns modifizierte Fassung des Programmsystems GAASA eingegliedert: O. Lindgren, O. Lindqvist und J. Nyborg, Acta Chem. Scand. 24, 732 (1970).

¹⁰⁾ Streufaktoren der Atome nach D. T. Cromer und J. T. Waber, Acta Crystallogr. 18, 104 (1965); Real- und Imaginärteil der Dispersionskorrektur nach D. T. Cromer, ebenda 18, 17 (1965).

	х	у	z		x	у	Z
S 1	0.1106 (1)	0.0267 (1)	0.4276 (2)	ні	0.3516	0.3629	0.1309
S 2	0.4964 (1)	0.2796 (1)	0.4775 (1)	H 2	0.2507	0.4371	0.1539
C 1	0.3042 (4)	0.4456 (4)	0.1329 (7)	H 3	0.3135	0.4249	0.2387
C 2	0.4679 (4)	0.1470 (5)	0.0537 (7)	Η4	0.4787	0.1468	0.4144
C 3	0.1388 (3)	0.1521 (3)	0.3800 (5)	Н 5	0.0445	0.3500	0.0021
C 4	0.0922 (3)	0.2369 (3)	0.4199 (5)	H 6	0.4069	0.1699	0.0824
C 5	0.2096 (3)	0.1687 (3)	0.2961 (5)				
C 6	0.1129 (3)	0.3392 (4)	0.3785 (5)				
N 1	0.2672 (3)	0.1807 (3)	0.2300 (5)				
N 2	0.1283 (3)	0.4224 (4)	0.3456 (6)				

Tab. 1. Lageparameter mit Standardabweichungen¹⁷⁾

Tab. 2. Anisotrope Temperaturfaktoren¹¹) $\beta \cdot 10^4$ mit Standardabweichungen¹⁷)

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
S 1	74 (1)	79 (1)	299 (3)	-3 (0)	88 (1)	1 (1)
S 2	57 (0)	94 (1)	231 (2)	-1 (0)	65 (1)	-1(1)
C 1	100 (4)	98 (4)	262 (12)	-11 (3)	94 (6)	21 (5)
C 2	81 (4)	135 (5)	220 (10)	-31 (3)	62 (6)	
C 3	43 (2)	83 (3)	131 (6)	-5 (2)	27 (3)	-12 (3)
C 4	43 (2)	83 (3)	130 (6)	-1 (2)	23 (3)	1 (4)
C 5	47 (2)	81 (3)	155 (7)	0 (2)	33 (4)	-11 (4)
C 6	47 (2)	79 (4)	170 (8)	1 (2)	37 (4)	-4 (4)
N 1	71 (2)	98 (3)	245 (8)	-1 (2)	77 (4)	6 (4)
N 2	86 (3)	93 (4)	265 (9)	1 (2)	71 (4)	8 (5)

Beschreibung und Diskussion der Struktur

Die Struktur des Bis(methylthio)maleonitrils (1) baut sich auf aus annähernd planaren dimeren Einheiten parallel zur Fläche (101), in denen zwei 1-Moleküle über drei van der Waals'sche S-S-Kontakte miteinander verknüpft sind. Abb. 1 zeigt eine solche Einheit mit eingezeichneten Atomabständen, bzw. Bindungswinkeln. Ferner sind auch die Abstände einiger inter- und intramolekularer van der Waals'scher Kontakte angegeben (gestrichelte Linien). Die Standardabweichungen der Abstände betragen alle ca. 0.01 Å und der Winkel ca. 1°. Die eingezeichneten H-Positionen der CH₃-Gruppen sind nur recht ungenau bestimmt (s. o.); zum Ausdruck kommt dieses besonders durch die stark schwankenden C-H-Abstände von 0.7 bis 1.1 Å.

Der $(NCCS)_2$ -Teil des 1-Moleküls ist signifikant¹⁸ nicht völlig planar mit einer leichten Verdrillung der zwei NCCS-Hälften um die C=C-Achse; jedoch sind die

-0.524 x + 0.0820 y + 0.847 z = 7.170

(kartesische Koordinaten, x parallel a, y parallel b) beschreiben mit einem Testverhältnis auf Planarität von $\chi^2 = 60.7$; dies entspricht bei 5 Freiheitsgraden einem Signifikanzniveau von weniger als 0.01 für Planarität.

¹⁷⁾ Die Ziffern in Klammern bezeichnen die Standardabweichungen in Einheiten der letzten angegebenen Dezimalstelle.

¹⁸⁾ Die (NCCS)2-Einheit läßt sich durch die "least squares"-Ebene

Abweichungen von der Planarität mit maximal ± 0.02 Å oberhalb und unterhalb der "least squares"-Ebene gering. Deutlich liegen dagegen die CH₃-Gruppen mit ± 0.09 und ± 0.13 Å oberhalb der "least squares"-Ebene.

Abb. 1. Dimere 1-Einheit mit Atomabständen in Å ($\sigma = 0.01$ Å) und Bindungswinkeln ($\sigma = 1^{\circ}$) sowie gestrichelt gezeichneten van der Waals-Kontakten

Die Abstände und Winkel innerhalb der beiden NCCS-CH₃-Hälften des Moleküls sind im Rahmen der bestehenden Standardabweichungen gleich, so daß dem Gesamtmolekül für qualitative spektroskopische Diskussionen sicherlich C_s -Symmetrie zugewiesen werden kann⁷; auch die angenäherte Lage der H-Atome stützt diese Bruttosymmetrie. Einen Vergleich der gefundenen Atomabstände mit Abständen in (NCCS)₂²⁻-Komplexen^{2, 19} gibt Tab. 3. Die Bindungslängen des kovalent-gebundenen (NCCS)₂ in 1 zeigen keine Abweichungen gegenüber den entsprechenden Werten

	1	(NCCS) ₂ ² -Komplexe ^{2, 19)}	
C-S	1.74	1.69-1.76	
$C \simeq C$	1.36	1.29-1.39	
C-C	1.415	1.391.49	
$\mathbf{C} = \mathbf{N}$	1.14	1.11-1.17	

Tab. 3. Atomabstände in (NCCS)2-Verbindungen (in Å)

19) M. R. Churchill und J. Cooke, J. Chem. Soc. A 1970, 2046.

in Komplexen mit doch zumindest partiell geladenen (NCCS)₂-Einheiten. Die Bindungswinkel am Schwefel sind mit 104° typische sp³-Tetraederwinkel mit zwei nach außen gerichteten freien Elektronenpaaren; demgemäß zeigen auch die H₃C-S-Abstände mit 1.795 \pm 0.015 Å einen relativ normalen C-S-Einfachbindungsabstand (1.817 Å²⁰⁾). Die Winkel am doppelt gebundenen Kohlenstoff sind mit ca. 120° trigonale sp²-Hybridwinkel, und die Winkel am dreifach gebundenen Kohlenstoff sind mit 179° praktisch lineare sp-Hybridwinkel.

Besonders auffallend ist der relativ kurze C-S-Abstand mit 1.74 \pm 0.01 Å, der eine partielle Doppelbindung nahelegt. Infolge der sicheren sp3-Hybridisierung des Schwefels kann diese nur durch ein 3d-Orbital des Schwefels gebildet werden. Im Gegensatz zu den sich über vier Liganden erstreckenden Doppelbindungen in Sulfatähnlichen Molekülen²¹⁾ besitzt in diesem Falle ein d_{xz}-Orbital die richtige Symmetrie für eine nur zum Kohlenstoff gerichtete Doppelbindung. Diese dy-Orbitale der S-Atome können mit den p_2 -Orbitalen der trigonalen C-C-Kohlenstoffatome in Wechselwirkung treten, und es würden sich im Idealfalle SCCS-Vierzentrenorbitale ausbilden, die mit zwei ("ungepaarten") Elektronen besetzt wären. Ein solch vollständig durchkonjugiertes System sollte jedoch eine wesentlich stärkere Aufweitung der C==C-Doppelbindung als beobachtet (1.33 Å²⁰⁾ zu 1.36 Å) zeigen, so daß sicherlich nur eine partielle p_{π} -d_{\pi}-Wechselwirkung angenommen werden kann. Der genaue Charakter von p_{π} -d_{π}-Wechselwirkungen ist auch in anderen Molekülen noch immer recht umstritten²²⁻²⁴⁾. Auch gibt eine qualitative Diskussion keine Erklärung für die beobachtete höhere Stabilität des cis-Vierzentrensystems im Dimercaptomaleonitril gegenüber dem trans-Vierzentrensystem im Dimercaptofumaronitril.

Die in Abb. 1 eingezeichneten intramolekularen van der Waals-Kontakte von 3.13 Å für S···S, von 2.91 und 2.94 Å für CH₃···C und von 2.77 Å für C···C sind um 0.6 bis 0.9 Å kleiner als die entsprechenden Summen der normalen van der Waals-Radien (3.7, 3.8 und 3.6 Å²⁵), doch ist dieses für die relativ gerichteten intramolekularen van der Waals-Kontakte nicht ungewöhnlich²⁶) und läßt sich beim Schwefel zwanglos durch Kontakt der Lücken zwischen den beiden freien sp³-Hybridorbitalen erklären. Gleichfalls sind die sp-hybridisierten C-Atome senkrecht zu ihren Bindungsachsen relativ von Elektronen entblößt und weisen in Lücken zwischen H-Atome der CH₃-Gruppen. Eine Wechselwirkung zwischen den beiden Fall auszuschließen.

- 23) K. A. R. Mitchell, Chem. Rev. 69, 157 (1969).
- ²⁴⁾ T. B. Brill, J. Chem. Educ. 50, 392 (1973).

²⁰⁾ Tables of Interatomic Distances and Configuration in Molecules and Ions, Suppl. 1956 bis 1959, Spec. Publ. No. 18, The Chemical Society, London 1965.

²¹⁾ D. W. J. Cruickshank und B. C. Webster in Inorganic Sulphur Chemistry, Herausgeber: G. Nickless, S. 7, Elsevier Publ. Comp., Amsterdam-London-New York 1968.

²²⁾ W. G. Salmond, Quart. Rev. 22, 253 (1968).

²⁵⁾ Van der Waals-Radien für CH₃ 2.0 Å, S 1.85 Å und N 1.5 Å nach *Pauling*²⁶⁾ und für C 1.8 Å nach *Kitaigorodskii*²⁷⁾.

²⁶⁾ L. Pauling, Die Natur der chemischen Bindung, Verlag Chemie GmbH, Weinheim 1968.

²⁷⁾ A. I. Kitaigorodskii, Organic Chemical Crystallography, Consultants Bureau, New York 1961.

Für ein Bis(methylthio)fumaronitril-Molekül (2) ergibt sich bei Annahme der gleichen Dimensionen wie bei I ein van der Waals-Kontakt von 3.00 Å für $S \cdots C$ gegenüber der Radien-Summe²⁵⁾ von 3.65 Å. Auch dieser Wert kann nicht als ungewöhnlich kurz bezeichnet werden, so daß rein sterisch keine Bevorzugung des *cis*-Systems gefolgert werden kann.

Die 1,1-Dithiolat-Verbindung Dimethyl-trithiocarbonat mit zwei SCH₃-Gruppen am gleichen C-Atom tritt in einer *cis-cis-* (3) und in einer *cis-trans*-Konformation (4) bezüglich der Anordnung der CH₃-Gruppen auf^{3, 28)}. Legt man die strukturellen Daten von I zugrunde,

so ergibt sich ein S···S-Kontakt von 3.00 Å, der nicht stark von dem Wert 3.13 Å in 1 abweicht, und ein S···CH₃-Kontakt von 3.08 Å im *cis-trans*-Konformeren. Konstruiert man dagegen ein entsprechendes *cis-trans*-1 (5), so ergibt sich ein S···CH₃-Kontakt von nur 2.27 Å, der die Bildung eines solchen Konformeren ausschlicßt. Versuche zum Nachweis eines *cis-cis-* und *cis-trans*-Gleichgewichtes mit Hilfe von IR-Spektren von 1 in Lösungsmitteln verschiedener Polarität und in der Schmelze zeigten demgemäß in keinem Falle eine entsprechende Aufspaltung, wie wir sie bei unseren Untersuchungen an Dimethyl-trichalkogenocarbonaten beobachtet hatten³⁾.

Abb. 2 zeigt die gegenseitige Anordnung der dimeren 1-Einheiten in einer Ebene parallel zur Fläche (101). Die Molekülschichten liegen bei z = 0 und z = 0.5, und zwar so, daß jeweils die beiden Hälften einer dimeren Einheit geringfügig unter- bzw. oberhalb der exakten Ebene liegend durch Symmetriezentren bei x = 0/y = 0 und x = 0.5/y = 0.5 miteinander verbunden sind. Insgesamt sind jedoch die Atomabweichungen von den (101)-Flächen bei z = 0 und 0.5 gering, so daß die gezeichnete Anordnung als planar angenommen werden kann. Die Konturen der Einzelmoleküle sind radial um CH₃, S, C und N unter Benutzung der van der Waals-Radien nach *Pauling* und *Kitaigorodskii*²⁵⁾ gezeichnet, und nur die Benutzung dieser doch recht rohen Radienwerte ergibt schon eine praktisch optimale Packung der 1-Moleküle. Innerhalb der Ebene besitzt jedes Molekül 6-Koordination.

²⁸⁾ K. Herzog, E. Steger, P. Rosmus, S. Scheithauer und R. Mayer, J. Mol. Struct. 3, 339 (1969).

Abb. 2. Gegenseitige Anordnung der 1-Moleküle parallel zur Fläche (101) bei z = 0 mit Molekülkonturen aus van der Waals-Radien²⁵⁾

Der senkrechte Abstand zwischen zwei aufeinanderfolgenden Molekülschichten beträgt 3.46 Å, so daß auch senkrecht ideale van der Waals-Radien und optimale Packungsdichte resultieren können. Daß dieses der Fall ist, zeigt Abb. 3, in der die zentrale dimere Einheit der Abb. 2 und zwei darunterliegende 1-Moleküle zu sehen sind. Zwei verschiedene Anordnungen der übereinanderliegenden Moleküle sind verwirklicht: zum einen sind die beiden Moleküle um 90° gegeneinander verdreht mit einer gestaffelten Anordnung der einzelnen Bindungszweige (2₁-Achse), zum anderen sind die beiden Moleküle gegeneinander gespiegelt und die voluminösen SCH₃-Gruppen liegen jeweils am Rande des anderen Moleküls (c-Ebene). In beiden Fällen wird eine maximale Annäherung der beiden Moleküle erreicht. Jedes Molekül stößt sowohl nach oben wie nach unten an fünf andere Moleküle an. Die Gesamtkoordination eines 1-Moleküls hat demnach den Wert 16 entsprechend einer optimalen Packungsdichte²⁷).

Abb. 3. Dimere 1-Einheit parallel (101) bei z = 0 und zwei darunterliegende Moleküle bei z = -0.5

Wir danken der Deutschen Forschungsgemeinschaft für die Bereitstellung des automatischen Einkristalldiffraktometers CAD4 und weitere Unterstützung. Desgleichen gilt unser Dank dem Fonds der Chemischen Industrie für die Gewährung von Sachmitteln.

[328/73]